448. The Elimination of Non-angular Alkyl Groups in Aromatisation Reactions. Part IV.*

By Wesley Cocker, L. O. Hopkins, (Mrs.) L. Mabrouk, (Miss) J. McCormick, and T. B. H. McMurry.

New di-, tri-, and tetra-alkylnaphthalenes have been synthesised, including two completely substituted in the peri-positions. Their infrared spectra are recorded. Spectroscopic characteristics of the last two compounds show no abnormalities which could arise from overlap of the alkyl groups.

Two cases of the loss of ethyl group during dehydrogenation with selenium and with palladised charcoal are reported.

The fifteen polyalkylnaphthalenes (Ia-r) have been synthesised by conventional methods shown by the formulæ. We have also synthesised 1 -methoxy- 8 -methylnaphthalene (Iu) and 8-methyl-1-naphthol (Iv).

All the benzoylpropionic acids (II; $\mathrm{R}^{*}=\mathrm{H}$) were known compounds, and the stages leading to the naphthalenes are well characterised. However, we prepared 1-ethyl-3methylnaphthalene (Ia) by two routes, namely, from methyl β-benzoyl- α-methylpropionate (IIa), obtained from benzene and methylsuccinic anhydride, ${ }^{1}$ and from β-benzoyl- β methylpropionic acid (IIb) obtained by the condensation of α-bromopropiophenone and ethyl sodiomalonate. In the first route the ethyl group was introduced at the (IIa \longrightarrow IIIa) stage, and in the second route this group was introduced at the (Vb \longrightarrow VIIa) stage.

Methyl β-benzoyl- α-ethylpropionate (IIc) was the starting material for the synthesis of 3 -ethyl-1-methylnaphthalene (Ib). We prepared the acid by the aluminium chloridecatalysed condensation of benzene and ethylsuccinic anhydride in methylene chloride. The position of the ethyl group was established by the ready formation of the benzylidene derivative (IId). Its position conforms with earlier work ${ }^{2,3}$ on the reaction of unsymmetrical succinic anhydrides with aromatic hydrocarbons in ionising solvents. It might be added that the acid corresponding to (IIc) has previously ${ }^{4}$ been prepared by other routes.

We found that conversion of the keto-esters (II) into the unsaturated acids (III) in good yield required use of boiling toluene and an excess of Grignard reagent. Under these conditions the predominant product was always the acid and not the corresponding ester.

[^0]The de-esterifying reagent is probably $\mathrm{MgI} \cdot \mathrm{OH}$ liberated in the formation of the double bond.

Palladised charcoal was used for dehydrogenation of the reduced naphthalenes (VI) and (VII). We encountered two cases where an alkyl group was eliminated during this reaction: when we heated 4,5,8-triethyl-1,2-dihydronaphthalene (VIII) with palladised charcoal at $260-280^{\circ}$ we obtained 1,4-diethylnaphthalene; and when $1,5,8$-triethyl-1,2,3,4-tetrahydronaphthalene (IX) was heated with selenium at $340^{\circ} 1,4$-diethylnaphthalene was again obtained. Neither palladised charcoal nor sulphur effected the latter

$$
\begin{array}{ll}
\text { lat }
\end{array}
$$

Reagents: I, $\mathrm{R}^{6} \cdot \mathrm{Mgl}$. 2, $\mathrm{H}_{2}-\mathrm{Ni} .3, \mathrm{H}_{3} \mathrm{PO}_{4}-\mathrm{P}_{2} \mathrm{O}_{5} .4, \mathrm{Zn}-\mathrm{Hg}-\mathrm{HCl}$. 5, $\mathrm{R}^{7} \cdot \mathrm{Mgl} . \quad 6, \mathrm{Pd}-\mathrm{C}$.
dehydrogenation, the tetrahydro-compound being recovered unchanged. These results confirm the experience of Cocker et al. ${ }^{7}$ We also found that 1,2,3,4-tetrahydro-5-methoxy-4-methylnaphthalene (VId; see below) was partly demethoxylated when heated with

[^1]palladised charcoal. This also accords with our previous experience. Thus 1-ethyl-1,2,3,4-tetrahydro-8-methoxy-5,7-dimethylnaphthalene loses its methoxyl group on dehydrogenation with palladised charcoal, as also does 1 -ethyl-1,2,3,4-tetrahydro-5-methoxy-7,8-dimethylnaphthalene. ${ }^{7}$

Table 1 shows that the polyalkylnaphthalenes have the characteristic absorption of naphthalenic hydrocarbons, ${ }^{8}$ with the expected progressive shift of the maxima to longer wavelengths ${ }^{9}$ with increasing substitution.

As expected the two naphthalenes completely substituted in the peri positions (Ip and Ir) do not show any change in naphthalenic absorption. There may be some distortion of the nucleus from the planar form arising from interference between the alkyl groups, but this would certainly not be so great as in octamethylnaphthalene where the non-planar nucleus ${ }^{10}$ shows no abnormal spectroscopic properties. ${ }^{9}$ It appears that some out-ofplane distortion of the naphthalene nucleus is permissible without loss of resonance between the nuclei.

Relatively few polyalkylnaphthalenes have been studied in the infrared region. The spectra of a few monosubstituted ${ }^{11}$ and polysubstituted ${ }^{12}$ alkylnaphthalenes have been recorded.

For purposes of correlation, the infrared spectra of naphthalenes may be divided into five regions, namely, (a) 4000-2000, (b) 2000-1650, (c) 1650-1300, (d) 1300-950, and (e) $950-650 \mathrm{~cm} .^{-1}$. Region (a) contains the $=\mathrm{CH}$ stretching vibrations, ${ }^{13}$ and Table 2 shows that, whilst there is some slight variation in the position of this band with change in substitution pattern, there seems to be no regularity about it. We have not measured the weak bands which occur in region (b). Region (c) may be divided into two groups, those in the $1500-1600$ and those in the $1380-1460 \mathrm{~cm} .^{-1}$ range.

Table 1. Ultraviolet-light absorption of polyalkylnaphthalenes (measured in ethanol).

No.	Naphthalene	$\lambda_{\text {max. }}(\AA)$ (intensity, $\log \varepsilon$, in parentheses)
Ia	1-Et-3-Me	2240(4.95), 2760-2800(3.80), 3210(2.65)
Ib	3-Et-1-Me	$2300(4 \cdot 87), 2870(3 \cdot 83), 3230(2 \cdot 91)$
Ic	1,6-Et ${ }_{2}$	2270(4.85), $2790(3 \cdot 62$), 3210(2.75)
Id	1,7-Et	2280(5.35), $2800(3 \cdot 83), 3210(2 \cdot 58)$
If	$4-\mathrm{Et}-1,2-\mathrm{Me}_{2}$	$2310(4 \cdot 97), 2910(3 \cdot 83), 3250(2 \cdot 91)$
Ig	l-Et-2,4-Me ${ }_{2}$	2310(4.93), $2910(3 \cdot 93), 3250(2 \cdot 96)$
Ih	1-Et-4,6-Me ${ }_{2}$	$2300(4 \cdot 85), 2900(3 \cdot 87), 3240(2 \cdot 94)$
Ij	1,4-Et ${ }_{2}-2-\mathrm{Me}$	2300(4.82), $2910(3 \cdot 85), 3250(2 \cdot 84)$
Ik	1,4-Et ${ }_{2}-6-\mathrm{Me}$	2310(4.91), $2900(3 \cdot 95), 3250(3 \cdot 09)$, 3555(2.33)
Il	1,6-Et $\mathrm{t}_{2}-4$-Me	2300(4•86), 2890(3.66), $3240(2 \cdot 57$)
Im	4,6-Et t_{2}-1-Me	2320(4.83), $2900(3 \cdot 82), 3240(2 \cdot 85)$
In	1,4,6-Et ${ }_{3}$	2310(4.82), 2880(3.83), $3240(2 \cdot 84$)
Ip	1-Et-4,5,8-Me ${ }_{3}$	2335(4.85), $2920-2930(3 \cdot 74), 3290(3 \cdot 05)$
Ir	1,4-Et ${ }_{2}-5,8-\mathrm{Me}_{2}$	2340(4.95), 2910(3•83), 3270(2•77)

The trisubstituted naphthalenes can be divided into two groups for comparison purposes. The first group consists of 4 -ethyl-1,2-dimethyl- (If), 1-ethyl-2,4-dimethyl(Ig), and 1,4-diethyl-2-methyl-naphthalene (I j), and the second of 1 -ethyl-4,6-dimethyl(Ih), 1,4-diethyl-6-methyl- (Ik), 1,6-diethyl-4-methyl- (Il), 4,6-diethyl-1-methyl- (Im), and 1,4,6-triethyl-naphthalene (In).

The naphthalenes of both groups have a relatively strong band at $1620-1625 \mathrm{~cm}^{-1}$ and most of them have a weaker band in the $1600-1610 \mathrm{~cm} .^{-1}$ region. In the cases of 1-ethyl-4,6-dimethyl- (Ih) and 1,4,6-triethyl-naphthalene (In), however, the latter band is at $1593 \mathrm{~cm} .^{-1}$. Most of the naphthalenes also have a weak band at, or around, $1578 \mathrm{~cm} .^{-1}$,

[^2] 2nd edn., 1957, p. 136.
${ }^{9}$ Abadir, Cook, and Gibson, $J ., 1953,8$.
${ }^{10}$ Donaldson and Robertson, J., 1953, 17.
${ }^{11}$ Broomfield, J. Inst. Petroleum, 1952, 38, 424.
${ }^{12}$ Cannon and Sutherland, Spectrochim. Acta, 1951, 4, 373; Mosby, J. Amer. Chem. Soc., 1952, '74, 2564.
${ }^{13}$ Fox and Martin, J., 1939, 318; Proc. Roy. Soc., 1940, 175, A, 208.
but for (Ih) and (In) this band is displaced to the lower wave number of 1572 and 1567 $\mathrm{cm} .^{-1}$ respectively. A further band in the $1504-1516 \mathrm{~cm} .^{-1}$ range is common to all the trialkylnaphthalenes, but it is significant that 1,4,6-triethylnaphthalene once again has its band at the bottom of this wave-number range. The last compound also has a more detailed spectrum in the $1500-1600 \mathrm{~cm} .^{-1}$ range than the other naphthalenes.
(VIII)

(IX)

It is perhaps significant that the three trisubstituted naphthalenes (If), (I) , and (I j), which have the three alkyl groups in the same nucleus, have a band at $1468-1478 \mathrm{~cm} .^{-1}$ which is absent from the spectra of the other trialkylnaphthalenes. Otherwise all the trialkylnaphthalenes have reasonable similarity of spectrum in the $1370-1460 \mathrm{~cm} .^{-1}$ range.

The naphthalenes show a pair of close bands in the $1450-1470 \mathrm{~cm} .^{-1}$ region due to $-\mathrm{CH}_{3}$. In some cases this appears as a broad band with a shoulder as for example in the spectrum of (Il).

The two tetrasubstituted naphthalenes are, as expected, very similar in spectrum at both ends of region (c), and need no special comment.

Region (d) is characterised by relatively weak bands shown by aromatic compounds. In general the position of the bands varies with the type of benzenoid substitution pattern, ${ }^{14}$ although data refer largely to substituted benzenes only. In the region (e) the bands are due to the out-of-plane deformation vibrations of the hydrogen atoms remaining on the ring; ${ }^{14}$ again published data are largely for substituted benzenes, and our interpretations in Table 2 are therefore somewhat speculative.

During this investigation we prepared 1-methoxy-8-methylnaphthalene (Iu) and 8 -methyl-1-naphthol which were required for another purpose. The method adopted was as shown in annexed formulæ.
β-o-Methoxyphenylbutyryl chloride ($\mathrm{X} ; \mathrm{R}=\mathrm{Cl}$) was obtained by a two-stage process from 4-methylcoumarin. The chloride was converted by the Arndt-Eistert process into γ-o-methoxyphenylvaleramide ($\mathrm{XI} ; \mathrm{R}=\mathrm{NH}_{2}$) which was then hydrolysed with alkali to the corresponding acid (XI; $\mathrm{R}=\mathrm{OH}$). The two-stage process was found to give more satisfactory yields than the direct conversion of the chloride into the homologous acid. Ring-closure of the acid with polyphosphoric acid afforded the tetralone (Vk).

A second compound to which we assign structure (XII) was obtained, in not insignificant yield, as a by-product of the cyclisation of the acid ($\mathrm{XI} ; \mathrm{R}=\mathrm{OH}$). Its analysis and

(XII)

(XIII)

Reagents: 1, OH^{-}, then $\mathrm{Me}_{2} \mathrm{SO}_{4}$. 2, $\mathrm{H}_{2}-\mathrm{Pt}$. 3, Arndt-Eistert. 4, $\mathrm{H}_{3} \mathrm{PO}_{4}-\mathrm{P}_{2} \mathrm{O}_{5}$.
molecular weight indicated formula $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{2}(\mathrm{OMe})_{2}$. In the ultraviolet spectrum it gave a single maximum at $2750 \AA(\log \varepsilon 4 \cdot 43)$ and in the infrared region it showed bands at

[^3]TABLE 2. Infrared spectra (cm..$^{-1}$) of substituted naphthalenes (liquid films)

Naphthalene	$\begin{aligned} & \text { Aromatic } \\ & =\mathrm{C}-\mathrm{H} \\ & 3000 \end{aligned}$	$\begin{gathered} \mathrm{C}-\mathrm{Me} \\ 3000-2850 \end{gathered}$	$\begin{gathered} C=C \\ 1600-1500 \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{Me} \\ 1450-1370 \end{gathered}$	Benzenoid substitution pattern 1280-950	$\begin{gathered} \begin{array}{c} \text { Adjacent } \\ \text { free } \end{array} \\ \text { H atoms } \\ 950-700 \end{gathered}$
$\begin{gathered} \mathrm{Ia} \\ \text { 1-Et-3-Me } \end{gathered}$	3107, 3006	2839	$\begin{aligned} & 1634,1612 \text {, } \\ & 1516 \end{aligned}$	$\begin{aligned} & 1459,1404, \\ & 1378 \end{aligned}$	$\begin{aligned} & 1278,1228,1137, \\ & 959 \\ & (1,2 \text {-di) } \\ & 1047 \\ & (1,2,3,5 \text {-tetra }) \end{aligned}$	$\begin{aligned} & 872,852,819 \\ & (1 \text { free H) } \\ & 787,747 \\ & \text { (4 adj. H) } \end{aligned}$
1,4-Et ${ }_{2}$	3080, 2967	2933, 2866	$\begin{aligned} & 1600,1556 \mathrm{w}, \\ & 1517 \end{aligned}$	$\begin{aligned} & \text { 1467, } 1453 \text {, } \\ & 1376 \end{aligned}$	$\begin{aligned} & 1269,1216,1113 \text {, } \\ & 1038,956 \\ & (1,2 \text {-di-) } \\ & 1164,1065,994 \mathrm{w} \\ & (1,2,3,4 \text {-tetra-) } \end{aligned}$	875w, 841 (2 adj. H) 789, 775w, 763, 750 (4 adj. H)
$1,6-\mathrm{Et}_{2}{ }^{\mathrm{Ic}}$	3034, 3000	2966, 2894	$\begin{aligned} & 1628,1600, \\ & 1572 \mathrm{w}, \\ & 1506 \end{aligned}$	1447, 1370	$\begin{aligned} & 1256,1204,1159, \\ & 1050 \\ & (1,2,3 \text {-tri- }) \\ & 1084 \mathrm{w}, 1000 \\ & (1,2,4 \text {-tri- }) \\ & 955,947 \end{aligned}$	$\begin{aligned} & 885,870 \\ & (1 \text { free H) } \\ & 819 \\ & (2 \text { adj. H) } \\ & 790,747 \\ & (3 \mathrm{adj} . \mathrm{H}) \end{aligned}$
${ }_{1,7-E t_{2}}{ }^{\mathrm{Id}}$	3040, 2956	2928, 2870	$\begin{aligned} & 1630,1602 \text {, } \\ & 1580 \mathrm{w}, \\ & 1514 \end{aligned}$	1453, 1377	$\begin{aligned} & 1260,1236,1207, \\ & 1147,1062 \\ & (1,2,3 \text {-tri-) } \\ & 1162,1078,1016 \\ & (1,2,4 \text {-tri-) } \\ & 953,964 \end{aligned}$	$\begin{aligned} & 880 \\ & (1 \text { free H) } \\ & 831 \\ & (2 \text { adj. H) } \\ & 752 \\ & 3 \text { adj. H } \end{aligned}$
$\underset{4-\mathrm{Et}-1,2-\mathrm{Me}_{2}}{\text { If }}$	3116, 3000	2917	$\begin{aligned} & 1616,1585, \\ & 1528 \end{aligned}$	$\begin{aligned} & \text { 1472, } \\ & 1424 \mathrm{w}, \\ & 1390 \end{aligned}$	$\begin{aligned} & 1256,1227,1178 \text {, } \\ & 1168,1090,1031, \\ & 1000,953 \\ & (1,2 \text {-di-) } \\ & 1065,1040 \mathrm{w} \\ & (1,2,3,4,5-\text { penta }) \end{aligned}$	$\begin{aligned} & 884,862 \mathrm{w} \\ & (1 \mathrm{free} \mathrm{H}) \\ & 759 \\ & (4 \mathrm{adj} . \mathrm{H}) \\ & 942,812,784 \mathrm{w}, \\ & 778 \mathrm{w} \end{aligned}$
$\underset{1-\mathrm{Et}-2,4-\mathrm{Me}_{2}}{\mathrm{Ig}}$	3120, 3000	29792920	$\begin{aligned} & 1620 \\ & 1605 \mathrm{w}, \\ & 1578 \mathrm{w}, \\ & 1514 \mathrm{w} \end{aligned}$	$\begin{aligned} & 1478,1449 \\ & 1400,1378 \end{aligned}$	$\begin{aligned} & \text { 1270, 1165, 1153, } \\ & 1031,1009 \\ & (1,2 \text {-di-) } \\ & 1214,1050 \\ & (1,2,3,4,5 \text {-penta-) } \\ & 952 \end{aligned}$	$\begin{aligned} & 890,867,853 \mathrm{w} \\ & (1 \text { free H) } \\ & 750 \\ & (4 \text { adj. H) } \\ & 804,783,695 \end{aligned}$
$\stackrel{\mathrm{Ih}}{1-\mathrm{Et}-4,6-\mathrm{Me}_{2}}$	3050, 3000	2925	$\begin{aligned} & 1625,1594, \\ & 1572,1564, \\ & 1553,1508 \end{aligned}$	$\begin{aligned} & \text { 1460, 1444, } \\ & 1430,1372 \end{aligned}$	$\begin{aligned} & \text { 1262, 1223, 1208, } \\ & 1159,1128,1070, \\ & 1050,1025 \\ & (1,2,4 \text {-tri-) } \end{aligned}$	884 (1 free H) 860, 812 ($2 \mathrm{adj} . \mathrm{H}$) 785, 764, 740
$\underset{1,4-\mathrm{Et}_{2}-2-\mathrm{Me}}{\mathrm{Ij}}$	3000	2964, 2893	$\begin{aligned} & \text { 1622, } 1609, \\ & 1578 \mathrm{w} \\ & 1520 \mathrm{~ms} \end{aligned}$	$\begin{aligned} & \text { 1468, 1459, } \\ & 1422 \mathrm{w} \\ & 1390,1378 \end{aligned}$	$\begin{aligned} & 1266,1178,1165 \mathrm{w}, \\ & 1093,1040,970 \\ & (1,2 \text {-di-) } \\ & 1219,1072,1062 \\ & (1,2,3,4,5 \text {-penta-) } \\ & 968 \end{aligned}$	884 (1 free H) 766 (4 adj. H) 816, 850w, 753, 714
$\underset{1,4-\mathrm{Et}_{2}-6-\mathrm{Me}}{\mathrm{Ik}}$	3000	2985	$\begin{aligned} & 1625,1600, \\ & 1512 \end{aligned}$	1463, 1453	$\begin{aligned} & \text { 1266, } 1240,1215, \\ & 1165,1145,1080 \text {, } \\ & 1070,995 \\ & \text { (1,4-di- and } 1,2,4- \\ & \quad \text { tri-) } \\ & 962 \end{aligned}$	$\begin{aligned} & 891,880 \\ & (1 \text { free } \mathrm{H}) \\ & 840,825 \\ & (2 \mathrm{adj} . \mathrm{H}) \\ & 793,782,758 \end{aligned}$
$\stackrel{\mathrm{Il}}{1,6-\mathrm{Et}_{2}-4-\mathrm{Me}}$	3015	2958, 2893	$\begin{aligned} & \text { 1612, } 1600 \text {, } \\ & 1575 \mathrm{w}, \\ & 1506 \end{aligned}$	$\begin{aligned} & 1448 \mathrm{~s}, \mathrm{br}, \\ & 1373,1336 \end{aligned}$	$\begin{aligned} & \text { 1266, 1189, 1055, } \\ & 1027,962 \\ & (1,2,4 \text {-tri-) } \\ & 1208,1156,1136 \\ & (1,2,3,4 \text {-tetra-) } \end{aligned}$	$\begin{aligned} & 872 \\ & (1 \text { free } \mathrm{H}) \\ & 822 \\ & (2 \text { adj. H) } \\ & 928,779,747, \\ & 700 \end{aligned}$
$\operatorname{Im}_{4,6-\mathrm{Et}_{2}-1-\mathrm{Me}}$	3015	2984, 2912	$\begin{aligned} & \text { 1629, 1604, } \\ & 1585 \mathrm{w}, \\ & 1515 \end{aligned}$	$\begin{aligned} & \text { 1454, } 1430 \text {, } \\ & 1379 \end{aligned}$	$\begin{aligned} & \text { 1270, 1166, 1106, } \\ & 1078,1025 \mathrm{w}, 963 \\ & (1,2,4 \text {-tri-) } \\ & 1213,1144 \\ & (1,2,3,4 \text {-tetra-) } \end{aligned}$	$\begin{aligned} & 878 \\ & (1 \text { free H) } \\ & 831 \\ & (2 \mathrm{adj} . \mathrm{H}) \\ & 813 \mathrm{w}, 778,697 \end{aligned}$

Table 2. (Continued.)

Naphthalene	$\begin{aligned} & \text { Aromatic } \\ & =\mathrm{C}-\mathrm{H} \\ & 3000 \end{aligned}$	$\begin{gathered} \mathrm{C}-\mathrm{Me} \\ 3000-2850 \end{gathered}$	$\begin{gathered} \mathrm{C}=\mathrm{C} \\ 1600-1500 \end{gathered}$	$\begin{gathered} \mathrm{C}-\mathrm{Me} \\ 1450-1370 \end{gathered}$	Benzenoid substitution pattern 1280-950	Adjacent free H atoms 950-700
$\begin{array}{r} \mathrm{In} \\ 1,4,6-\mathrm{Et}_{3} \end{array}$	3000	2966, 2903	$\begin{aligned} & 1621,1593 \text {, } \\ & 1567 \mathrm{w}, \\ & 1550 \mathrm{w}, \\ & 1531 \mathrm{w}, \\ & 1504 \end{aligned}$	$\begin{aligned} & 1456,1447 \text {, } \\ & 1367 \end{aligned}$	$\begin{aligned} & 1260,1160 \mathrm{w}, \\ & 1075 \mathrm{w}, 1056 \mathrm{w}, \\ & 1026,990 \\ & (1,2,4 \text {-tri-) } \\ & 1200 \mathrm{w}, 1141 \\ & (1,2,3,4 \text {-tetra-) } \\ & 953 \end{aligned}$	$\begin{aligned} & 873 \\ & (1 \text { free H) } \\ & 825 \\ & (2 \text { adj. H) } \\ & 781 \end{aligned}$
$\underset{1-\mathrm{Et}-4,5,8-\mathrm{Me}_{3}}{ }$	2980	2937, 2886	$\begin{aligned} & 1623,1605 \text {, } \\ & 1578 \mathrm{w}, \\ & 1513 \mathrm{w} \end{aligned}$	$\begin{aligned} & 1465,1453, \\ & 1406,1384 \end{aligned}$	$\begin{aligned} & 1272 \mathrm{w}, 1216,1153, \\ & 1142 \mathrm{w}, 1095 \mathrm{w}, \\ & 1070 \mathrm{w}, 1057,1037, \\ & 1021 \mathrm{w} \\ & (1,2,3,4 \text {-tetra- and } \\ & 1,4 \text {-di-) } \end{aligned}$	817 (2 adj. H) 928w, 890w, 862, 847w, 765
$\underset{1,4-\mathrm{Et}_{2}-5,8-\mathrm{Me}_{2}}{\mathrm{Ir}}$	3080, 3000	2953, 2898	$\begin{aligned} & 1619 \mathrm{w}, 1608 \text {, } \\ & 1588 \mathrm{w}, \\ & 1502 \mathrm{w} \end{aligned}$	$\begin{aligned} & \text { 1456, } 1465 \text {, } \\ & 1412 \mathrm{w}, \\ & 1381, \\ & 1320 \mathrm{w} \end{aligned}$	$\begin{aligned} & \text { 1214, } 1152,1057, \\ & 1035 \\ & (1,2,3,4 \text {-tetra- and } \\ & 1,4 \text {-di-) } \end{aligned}$	$\begin{aligned} & 819 \\ & (2 \text { adj. H) } \\ & 907 \mathrm{w}, 884,875, \\ & 855,760 \mathrm{w} \end{aligned}$

$1673(\mathrm{Ar} \cdot \mathrm{CO})$ and at 1605,1578 , and $1504 \mathrm{~cm} .^{-1}(\mathrm{C}=\mathrm{C})$. Hydroxyl infrared absorption varied with the medium. In chloroform where hydrogen bonding is unlikely, the substance showed a band at $3583 \mathrm{~cm} .^{-1}$ and in Nujol at $3450 \mathrm{~cm} .^{-1}$ indicative of hydrogen bonding. Models show that hydrogen bonding in (XII) is possible. Attempts to dehydrate this compound with boiling acetic anhydride, and with phosphorus oxychloride, both of these alone and in pyridine, left the compound unaffected.

The spectra and properties of compound (XII) are reminiscent of those of the analogue (XIII) described by Cocker and Jenkinson, ${ }^{15}$ and we feel justified in suggesting structure (XII), with its highly hindered and hydrogen-bonded carbonyl group, for the by-product.

Experimental

Ultraviolet spectra refer to ethanol solutions, and infrared spectra of oils to liquid films and of solids to Nujol mulls.

1-Ethyl-3-methylnaphthalene (Ia).-(i) 2-Methyl-4-phenylhex-3-enoic acid (IIIa). β-Benzoyl-α-methylpropionic acid ${ }^{1}$ (cf. IIa; but $\mathrm{R}^{*}=\mathrm{H}$) (38 g .) with diazomethane in methanol-ether gave methyl β-benzoyl- α-methylpropionate (IIa) ($\mathbf{3 7} \mathrm{g}$.) as prisms (from light petroleum), m. p. 56° (Found: C, $69.9 ; \mathrm{H}, 6.8 . \quad \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}$ requires $\mathrm{C}, 69.9 ; \mathrm{H}, 6.8 \%$). (a) Ethylmagnesium iodide, from ethyl iodide (39 g .) and magnesium (6 g .) in dry ether ($86 \mathrm{c} . \mathrm{c}$.), was slowly added with stirring to a solution of the ester (5 g .) in ether (20 c.c.), and the mixture was refluxed for 1 hr . and set aside overnight. Decomposition of the complex with ice-cold hydrochloric acid afforded methyl 2-methyl-4-phenylhex-3-enoate (0.5 g .), b. p. $165^{\circ} / 17 \mathrm{~mm}$., $n_{\mathrm{D}}{ }^{20} 1.5194, \lambda_{\text {max }}$ $2435 \AA(\log \varepsilon 3.24)$, $\nu_{\text {max. }} 1770 \mathrm{~cm} .{ }^{-1}\left(\mathrm{CO}_{2} \mathrm{Me}\right)$ (Found: C, $77 \cdot 0 ; \mathrm{H}, 8 \cdot 0 . \mathrm{C}_{14}^{\mathrm{D}} \mathrm{H}_{18} \mathrm{O}_{2}$ requires C, 77.0 ; H, 8.3%). (b) Methyl β-benzoyl- α-methylpropionate (IIa) ($20.6 \mathrm{~g} ., 0 \cdot 1 \mathrm{~mole}$) in dry ether (100 c.c.) was added dropwise with stirring to ethylmagnesium iodide (0.138 mole) [from ethyl iodide (21.5 g .)] in dry ether (50 c.c.), the mixture being kept at 0°. After 30 min . it was allowed to warm to room temperature and dry toluene (30 c.c.) was added. Ether was removed by distillation, and the residue was heated at 100° for 6 hr . and then worked up in the usual way. The required acid was obtained as a colourless oil (16 g .), b. p. $183^{\circ} / 17 \mathrm{~mm}$., $\lambda_{\text {max }} 2390 \AA$ (log $\varepsilon 3.91$), $\nu_{\text {max }} 1716 \mathrm{~cm} .^{-1}\left(\mathrm{CO}_{2} \mathrm{H}\right)$ (Found: C, 76.2; H, 7.6. $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}$ requires $\mathrm{C}, 76 \cdot 4 ; \mathrm{H}, 7.9 \%$). Its S-benzylisothiouronium salt (colourless needles) had m. p. 126° (Found: C, 68.1; H, 6.4. $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{~S}$ requires $\mathrm{C}, 68 \cdot 1 ; \mathrm{H}, 7 \cdot 1 \%$).
(ii) 2-Methyl-4-phenylhexanoic acid (IVa). The acid (IIIa) (15 g .) was reduced in methanol (60 c.c.) with Raney nickel (1 g .) at $100^{\circ} / 70 \mathrm{~atm}$. of hydrogen. The required acid (14.2 g .) distilled as a colourless oil (12.4 g .), b. p. $183^{\circ} / 17 \mathrm{~mm}$., $\nu_{\text {max. }} 1706 \mathrm{~cm} .^{-1}$ (Found: C, $76.0 ; \mathrm{H}, 8.8$. $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}$ requires $\mathrm{C}, 75 \cdot 7 ; \mathrm{H}, 8 \cdot 8 \%$).
(iii) 4-Ethyl-1,2,3,4-tetrahydro-2-methyl-1-oxonaphthalene (Va). 2-Methyl-4-phenylhexanoic
${ }^{15}$ Cocker and Jenkinson, J., 1954, 2420.
acid (12.4 g .) was added with stirring to cold polyphosphoric acid prepared by heating 90% phosphoric acid (33.4 c.c.) with phosphoric oxide ($35 \cdot 3 \mathrm{~g}$.) at 165° for 1 hr . The mixture was heated at 165° for 5 min ., cooled, and poured into cold water. The tetralone was extracted with ether, and the ether was washed with sodium carbonate solution, and distilled, giving an oil (8.5 g.), b. p. $101^{\circ} / 1 \mathrm{~mm}$., $\nu_{\text {max. }} 1691 \mathrm{~cm} . .^{-1}$ ($\mathrm{Ar} \cdot \mathrm{CO}$) (Found: $\mathrm{C}, 83 \cdot 0 ; \mathrm{H}, 8.5 . \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}$ requires C, 82.9 ; H, $8 \cdot 6 \%$).
(iv) 4-Ethyl-1,2,3,4-tetrahydro-2-methylnaphthalene (VIa). A mixture of the tetralone (Va) (3 g .), toluene ($60 \mathrm{c.c}$.), acetic acid ($5 \mathrm{c.c}$.), hydrochloric acid ($200 \mathrm{c.c}$.), water ($45 \mathrm{c.c}$.), and amalgamated zinc (80 g .) was refluxed for 60 hr . The toluene layer was separated, the aqueous layer was extracted with ether, and the combined extracts were dried and distilled, giving 4-ethyl-1,2,3,4-tetrahydro-2-methylnaphthalene (VIa) (1 g.), b. p. $71^{\circ} / 1 \mathrm{~mm}$. (Found: C, $89 \cdot 8$; $\mathrm{H}, 9 \cdot 9 . \quad \mathrm{C}_{13} \mathrm{H}_{18}$ requires $\mathrm{C}, 89 \cdot 6 ; \mathrm{H}, 10 \cdot 4 \%$).
(v) 1-Ethyl-3-methylnaphthalene (Ia). The preceding compound (0.9 g .) was heated at $260-280^{\circ}$ for 4 hr . with palladised charcoal (0.9 g .). The product, collected in ether, distilled from sodium as a colourless oil ($0 \cdot 2$ g.), b. p. $140^{\circ} / 22 \mathrm{~mm}$., $n_{\mathrm{D}}{ }^{24} 1.5969$ (Found: C, $91 \cdot 6 ; \mathrm{H}, 8 \cdot 4$. $\mathrm{C}_{13} \mathrm{H}_{14}$ requires $\mathrm{C}, 91 \cdot 7 ; \mathrm{H}, 8.3 \%$). Its picvate consisted of brick-red needles (from methanol), m. p. 112.5° (Found: C, $57 \cdot 6 ; \mathrm{H}, 4.4 . \quad \mathrm{C}_{19} \mathrm{H}_{17} \mathrm{O}_{7} \mathrm{~N}_{3}$ requires $\mathrm{C}, 57 \cdot 1 ; \mathrm{H}, 4.3 \%$). Its styphnate crystallised as yellow needles (from acetic acid), m. p. 119.5° (Found: C, $54.8 ; \mathrm{H}, 4.4$. $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{O}_{8} \mathrm{~N}_{3}$ requires $\mathrm{C}, 54.9 ; \mathrm{H}, 4 \cdot 1 \%$). Its trinitrobenzene adduct (lemon needles from methanol) had m. p. 115° (Found: C, $59 \cdot 2 ; \mathrm{H}, 4 \cdot 4 . \quad \mathrm{C}_{19} \mathrm{H}_{17} \mathrm{O}_{6} \mathrm{~N}_{3}$ requires $\mathrm{C}, 59.5 ; \mathrm{H}, 4.4 \%$). Its trinitrotoluene adduct (lemon needles from methanol) had m. p. 75° (Found: C, 59.3; H, 4.9. $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{6} \mathrm{~N}_{3}$ requires C, $60 \cdot 4 ; \mathrm{H}, 4.8 \%$).
β-Benzoylbutyric Acid (IIb).- α-Bromopropiophenone ($45 \cdot 5 \mathrm{~g}$.) was added to a suspension of ethyl sodiomalonate, from sodium (6 g .) and ethyl malonate (45.5 g .) in dry benzene ($200 \mathrm{c} . \mathrm{c}$.). The mixture was heated at 100° for 6 hr ., and the resulting ester was then hydrolysed with excess of methanolic potassium hydroxide. In this way (1-benzoylethyl)malonic acid (15 g .), m . p. 158°, was obtained. It was heated at 160° until effervescence had ceased and the product triturated with light petroleum, β-benzoylbutyric acid ($5 \cdot 5 \mathrm{~g}$.), m. p. 56°, being obtained. It crystallised from water as colourless prisms, m. p. 58° (lit., ${ }^{1}$ m. p. $56-59^{\circ}$).
β-Methyl- γ-phenylbutyric Acid (IVb).—The preceding compound (IIb) was refluxed for 40 hr . with concentrated hydrochloric acid ($20 \mathrm{c.c}$.), water ($9 \mathrm{c} . c$.), toluene (12 ccc), and amalgamated zinc (16 g .). The toluene layer was separated and the aqueous layer was extracted several times with ether. From the combined extracts β-methyl- γ-phenylbutyric acid (IVb) was obtained as an oil ${ }^{16}$ ($3 \cdot 5$ g.), b. p. $172^{\circ} / 15 \mathrm{~mm}$. (Found: C, $73 \cdot 4 ; \mathrm{H}, 7 \cdot 6$. Calc. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}$: $\mathrm{C}, 74 \cdot 1 ; \mathrm{H}, 7.9 \%)$. In the infrared spectrum it showed peaks at $1716\left(\mathrm{CO}_{2} \mathrm{H}\right)$ and at 1794 w $\mathrm{cm} .^{-1}$, the latter probably due to the presence of some 3-methyl-4-phenylbut-3-en-1,4olide.

1,2,3,4-Tetrahydro-3-methyl-1-oxonaphthalene (Vb).—The acid (IVb) ($2 \cdot 4 \mathrm{~g}$.) was heated with concentrated sulphuric acid ($16 \mathrm{c} . \mathrm{c}$.) at 90° for 10 min ., and the mixture was then poured into water. The tetralone was extracted with ether which was washed with sodium carbonate solution and then distilled. It was collected as an oil ${ }^{17}$ (1 g .), b. p. $128^{\circ} / 14 \mathrm{~mm}$. (Found: $\mathrm{C}, 81 \cdot 5 ; \mathrm{H}, 7 \cdot 4$. Calc. for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}: \mathrm{C}, 82.5 ; \mathrm{H}, 7.55 \%$).

1-Ethyl-3,4-dihydro-3-methylnaphthalene (VIIa).-The tetralone (0.9 g .) in ether (20 c.c.) was added to ethylmagnesium iodide [from ethyl iodide ($5 \mathrm{cc} . \mathrm{c}$.)] in ether ($30 \mathrm{c} . \mathrm{c}$.) and the mixture was refluxed for 3 hr . Decomposition of the complex and collection of the product in ether afforded 1-ethyl-3,4-dihydro-3-methylnaphthalene (VIIa) (0.6 g .), b. p. $136^{\circ} / 14 \mathrm{~mm}$.

3-Ethyl-1-methylnaphthalene (Ib).-(i) Ethylsuccinic anhydride. We found the following method to be preferable to the methods of Wren and Crawford ${ }^{18}$ and of Smith and Horwitz. ${ }^{19}$ Diethyl ethylmalonate (188 g .) was added slowly with stirring to sodium ethoxide, from sodium (23 g .) in ethanol (50 c.c.). The mixture was cooled in ice, and sodium iodide (1 g .) was added and followed by ethyl chloroacetate (122.5 g .) dropwise with stirring. The mixture was then refluxed for 20 hr . with stirring. Alcohol was removed by distillation, and the residue was diluted with water and extracted several times with ether from which triethyl butane-1,2,2tricarboxylate was obtained as an oil (150 g .), b. p. $193^{\circ} / 60 \mathrm{~mm}$. The ester was refluxed with

[^4]excess of concentrated hydrochloric acid until a clear solution was obtained which was then evaporated in a vacuum, giving ethylsuccinic acid (60 g.), m. p. 94°. A sample crystallised from benzene-ether had m. p. 97°. The acid of m. p. $94^{\circ}(60 \mathrm{~g}$.) was distilled and the fraction of b. p. $235-250^{\circ}$ was collected. Redistillation gave ethylsuccinic anhydride (45 g .), b. p. $146^{\circ} / 25 \mathrm{~mm}$.
(ii) β-Benzoyl- α-ethylpropionic acid (cf. IIc; but $\mathrm{R}^{*}=\mathrm{H}$). Aluminium chloride (180 g.) was added with stirring to ethylsuccinic anhydride (74 g .) in ice-cold benzene (65 c.c.) and methylene chloride (225 c.c.), and the mixture was stirred for 18 hr . The required acid (78 g .; $\mathrm{m} . \mathrm{p} .81^{\circ}$) was obtained from the mixture in the usual way. It crystallised from light petroleum as needles, ${ }^{4}$ m. p. 85° (Found: C, $70 \cdot 4 ; \mathrm{H}, 6 \cdot 6$. Calc. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}$: C, $69 \cdot 9 ; \mathrm{H}, 6.8 \%$). Its methyl ester (IIc) (prepared by use of methanolic sulphuric acid) distilled at $132^{\circ} / 1 \mathrm{~mm}$. and had $\nu_{\max } 1730\left(\mathrm{CO}_{2} \mathrm{Me}\right)$ and $1685 \mathrm{~cm} .^{-1}(\mathrm{Ar} \cdot \mathrm{CO})$ (Found: C, 70.4; H, 7.2. $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}$ requires C, $70.9 ; \mathrm{H}, \mathbf{7 . 3} \%$).
(iii) 3-Benzoyl-2-ethyl 4-phenylbut-3-enoic acid (IId). A solution of benzaldehyde (1.06 g .) in methanol (15 c.c.) was added to a solution of the above ester (1 g .) and sodium methoxide (0.54 g .) in methanol ($5 \mathrm{c} . \mathrm{c}$.). The solution was heated at 40° for 10 min . and set aside overnight. Methanol was then removed, and the residue acidified with dilute hydrochloric acid and extracted with ether. The ethereal extract was washed with sodium bisulphite solution, dried, and distilled. The residue, crystallised from light petroleum, gave the benzylidene derivative (IId) (1.5 g .) as needles, m. p. $123^{\circ}, \nu_{\text {max }} 1702\left(\mathrm{CO}_{2} \mathrm{H}\right), 1651(\mathrm{CO}-\mathrm{C}=\mathrm{C}), 1600 \mathrm{~cm} .^{-1}(\mathrm{C}=\mathrm{C})$ (Found: $\mathrm{C}, 77 \cdot 1 ; \mathrm{H}, 6 \cdot 1 . \quad \mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{3}$ requires $\mathrm{C}, 77 \cdot 5 ; \mathrm{H}, 6 \cdot 2 \%$).
(iv) 2-Ethyl-4-phenylpent-3-enoic acid (IIIb).-The method adopted was that used for the preparation of (IIa). Using methyl β-benzoyl- α-ethylpropionate (IIc) (30 g .) and methylmagnesium iodide [from methyl iodide (27.43 g .)] afforded the acid (IIIb) (19 g .), b. p. $135^{\circ} / \mathbf{1}$ $\mathrm{mm} ., \mathrm{m} . \mathrm{p} .48-49^{\circ}$, which crystallised from light petroleum as needles, m. p. $50-51^{\circ}, v_{\text {max }}$ $1700\left(\mathrm{CO}_{2} \mathrm{H}\right)$ (Found: C, 76.6; H, 7.8. $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}$ requires $\mathrm{C}, 76 \cdot 4 ; \mathrm{H}, 7.9 \%$).
(v) α-Ethyl- γ-phenylvaleric acid (IVc). The preceding acid (32 g .) was hydrogenated over Raney nickel in methanol at $100^{\circ} / 80 \mathrm{~atm}$., giving the methyl ester of acid (IVc). This was hydrolysed with 7.5% methanolic potassium hydroxide to the acid (IVc) (17 g .), b. p. $139^{\circ} / 1$ $\mathrm{mm} ., \nu_{\max } 1700\left(\mathrm{CO}_{2} \mathrm{H}\right)$ (Found: C, 75.2; H, 9.1. $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}$ requires C, $75 \cdot 7 ; \mathrm{H}, 8.8 \%$).
(vi) 2-Ethyl-1,2,3,4-tetrahydro-4-methyl-1-oxonaphthalene (Vc). Cyclisation of the previous compound (IVc) (17 g .) with polyphosphoric acid, from phosphoric acid (90%; 46 c.c.) and phosphorus pentoxide (4 g .), as described for compound (Va) gave the tetralone (Vc) (9 g.), b. p. $123^{\circ} / 1 \mathrm{~mm}$., $\lambda_{\text {max }} 2480$ and $2890 \AA$ ($\log \varepsilon 4.98$ and $4 \cdot 16$ respectively), $\nu_{\text {max. }} 1680 \mathrm{~cm} .^{-1}$ (Ar.CO) (Found: C, $82.3 ; \mathrm{H}, 8.9 . \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}$ requires C, 82.9 ; H, 8.6%).
(vii) 3-Ethyl-1,2,3,4-tetrahydro-1-methylnaphthalene (VIb).-The tetralone (Vc) (3 g.), reduced as described for its analogue (VIa), gave the tetralin (VIb) (1 g.), b. p. $77^{\circ} / 1 \mathrm{~mm}$. (Found: C, $89.0 ; \mathrm{H}, 10 \cdot 9 . \quad \mathrm{C}_{13} \mathrm{H}_{18}$ requires $\mathrm{C}, \mathbf{8 9 . 6} ; \mathrm{H}, \mathbf{1 0 . 4 \%}$).
(viii) 3-Ethyl-1-methylnaphthalene (Ib). The preceding tetralin (0.6 g .) was heated with palladised charcoal (0.6 g .) for 4.5 hr . at $260-270^{\circ}$, and the product was extracted with benzene. Distillation gave 3 -ethyl-1-methylnaphthalene (Ib) as an oil in small yield. Its picrate (orange needles from methanol) had m. p. 83° (Found: C, 57.4; H, 5.0. $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{O}_{7} \mathrm{~N}_{3}$ requires C, $57 \cdot 1$; H, 4.3%).

1,6-Diethylnaphthalene (Ic).-(i) Methyl β-p-ethylbenzoylpropionate (IIe). β - p-Ethylbenzoyl propionic acid ${ }^{5}$ (cf. IIe; but $\mathrm{R}^{*}=\mathrm{H}$) (30 g .), when refluxed for 2 hr . with methanol ($50 \mathrm{c} . \mathrm{c}$.) and concentrated sulphuric acid (5 c.c.), gave the keto-ester (IIe) (28.8 g.), b. p. $134^{\circ} / 1 \mathrm{~mm}$., m. p. $33^{\circ}, \nu_{\text {max. }} 1754 \mathrm{~cm} .^{-1}\left(\mathrm{CO}_{2} \mathrm{Me}\right.$ and $\left.\mathrm{Ar} \cdot \mathrm{CO}\right)$ (Found: C, $70 \cdot 4 ; \mathrm{H}, 7 \cdot 0 . \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}$ requires C, $70 \cdot 9 ; \mathrm{H}, 7 \cdot 3 \%$).
(ii) 4-p-Ethylphenylhex-3-enoic acid (IIIc). Ethylmagnesium iodide [from ethyl iodide $(30.2 \mathrm{~g}$.)] in ether ($60 \mathrm{c} . \mathrm{c}$.) was added to the ester (IIe) (28.8 g .) in dry ether ($100 \mathrm{c.c}$.), and the reaction was completed as described for the preparation of the acid (IIIa). 4 -p-Ethylphenyl-hex-3-enoic acid (IIIc) was obtained as an oil (12.5 g .), b. p. $182^{\circ} / 1 \mathrm{~mm} ., \nu_{\text {max }} 1715 \mathrm{~cm} . .^{-1}\left(\mathrm{CO}_{2} \mathrm{H}\right)$ (Found: C, 77.2; H, 8.4. $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2}$ requires C, $77.0 ; \mathrm{H}, 8.3 \%$).
(iii) 4-p-Ethylphenylhexanoic acid (IVd). The unsaturated acid (IIIc) (12.5 g .) in methanol (100 c.c.) was hydrogenated over Raney nickel at $100^{\circ} / 110 \mathrm{~atm}$., giving a mixture of saturated acid and ester, which was refluxed with 5% methanolic potassium hydroxide (50 c.c.) for 2 hr . The required acid (IVd) distilled as an oil (5.5 g .), b. p. $132-133^{\circ} / 1 \mathrm{~mm}$., $\nu_{\text {max }} 1700 \mathrm{~cm} .^{-1}\left(\mathrm{CO}_{2} \mathrm{H}\right)$ (Found: C, 76.7; H, 9.4. $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2}$ requires $\mathrm{C}, \mathbf{7 6 . 3} ; \mathrm{H}, \mathbf{9 . 1 5} \%$).
(iv) 1,6-Diethyl-1,2,3,4-tetrahydro-4-oxonaphthalene (Vd). The previous compound (IVd) (12 g .) was cyclised with polyphosphoric acid, from phosphoric acid (90%; 33.4 c.c.) and phosphoric oxide ($35 \cdot 3 \mathrm{~g}$), at 165° for 3 min . The mixture was poured into water, and the product was extracted with ether, giving the required tetralone (Vd) $(9.0 \mathrm{~g}$.), b. p. $117-118 \% 1$ $\mathrm{mm} ., \nu_{\max } 1680 \mathrm{~cm} .^{-1}$ (Ar•CO) (Found: C, 83.2; H, $9 \cdot 0 . \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}$ requires C, $83 \cdot 1 ; \mathrm{H}, 9 \cdot 0 \%$).
(v) 1,6-Diethyl-1,2,3,4-tetrahydronaphthalene (VIc). The tetralone ($3 \cdot 3 \mathrm{~g}$.) in toluene (60 c.c.) was refluxed for 42 hr . with amalgamated zinc (80 g .), concentrated hydrochloric acid (100 c.c.), acetic acid (5 c.c.), and water (45 c.c.). 1,6-Diethyl-1,2,3,4-tetrahydronaphthalene (VIc) was produced as an oil ($1 \cdot 2 \mathrm{~g}$.), b. p. $92^{\circ} / 1 \mathrm{~mm}$. (Found: C, $89 \cdot 4 ; \mathrm{H}, 10 \cdot 6 . \mathrm{C}_{19} \mathrm{H}_{20}$ requires C, 89.3 ; H, 10.7%).
(vi) 1,6-Diethylnaphthalene (Ic). The preceding compound (VIc) (1 g.), heated with palladised charcoal (1 g .) for 4 hr . at $260-280^{\circ}$, gave 1,6 -diethylnaphthalene (Ic) $(0.8 \mathrm{~g}$.), b. p. $76^{\circ} / 1 \mathrm{~mm} ., n_{\mathrm{D}}{ }^{21} 1.5806$ (Found: C, $90.6 ; \mathrm{H}, 9.0 . \mathrm{C}_{14} \mathrm{H}_{16}$ requires C, $91.25 ; \mathrm{H}, 8.75 \%$). Its picrate (orange needles from methanol) had m. p. 70°.

1,7-Diethylnaphthalene (Id).-(i) 1,7-Diethyl-3,4-dihydronaphthalene (VIIb). 7-Ethyl-$1,2,3,4$-tetrahydro-1-oxonaphthalene ${ }^{20}$ (Ve) ($7 \cdot 7 \mathrm{~g}$.) in ether (25 c.c.) was add ed to ethylmagnesium iodide [from ethyl iodide ($12 \cdot 3 \mathrm{~g}$.)], and the mixture was refluxed for 3 hr . The product, consisting partly of alcohol and partly of dihydronaphthalene, was set aside with anhydrous formic acid (20 c.c.) for 2 hr . The mixture was poured into water and extracted with ether, giving 1,7-diethyl-3,4-dihydronaphthalene (VIIb) (5.7 g .), b. p. $79^{\circ} / 1 \mathrm{~mm}$. (Found: $\mathrm{C}, 90 \cdot 3 ; \mathrm{H}, 9.6 . \quad \mathrm{C}_{14} \mathrm{H}_{18}$ requires $\left.\mathrm{C}, 90.3 ; \mathrm{H}, 9.7 \%\right)$.
(ii) 1,7-Diethylnaphthalene (Id). Dehydrogenation of the preceding compound ($\mathbf{3} \mathrm{g}$) with palladised charcoal at $260-270^{\circ}$ for 4 hr . gave 1,7-diethylnaphthalene (Id) (2.5 g .), b. p. $87^{\circ} / 1$ $\mathrm{mm} ., n_{\mathrm{D}}{ }^{20} 1.5858$ (Found: C, $91 \cdot 2 ; \mathrm{H}, 8.8 . \mathrm{C}_{14} \mathrm{H}_{16}$ requires $\mathrm{C}, 91 \cdot 25 ; \mathrm{H}, 8.75 \%$). Its picrate (orange needles from methanol) had m. p. 78° (Found: C, 58.55 ; H, $4.8 . \mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{7} \mathrm{~N}_{3}$ requires C, 58.1 ; H, 4.6%).

2-Ethyl-1,4-dimethylnaphthalene (Ie).-(i) 3-Ethyl-1,2-dihydro-1,4-dimethylnaphthalene (VIIc). 2-Ethyl-1,2,3,4-tetrahydro-4-methyl-1-oxonaphthalene (Vc) (1 g.) in dry ether (10 c.c.) was added with stirring to an ice-cold solution of methylmagnesium iodide, from methyl iodide (3.5 g .) in ether (25 c.c.). The mixture was refluxed for 7 hr . and set aside overnight. Decomposition of the complex with ice and ammonium chloride gave the dihydronaphthalene (VIIc) (0.6 g .), b. p. $75^{\circ} / 1 \mathrm{~mm}$. (Found: C, $90.2 ; \mathrm{H}, \mathbf{1 0 . 0} \mathrm{C}_{14} \mathrm{H}_{18}$ requires $\mathrm{C}, \mathbf{9 0 . 3} \mathbf{~ H}, \mathbf{9 . 7 \%}$).
(ii) 2-Ethyl-1,4-dimethylnaphthalene (Ie). The dihydronaphthalene ($0 \cdot 4 \mathrm{~g}$.), heated at $260-280^{\circ}$ for 4.5 hr . with palladised charcoal, gave an oil which was directly converted into its trinitrobenzene adduct. This crystallised from methanol as yellow needles, m. p. 123° (Found: $\mathrm{C}, 59 \cdot 6 ; \mathrm{H}, 4.5 . \quad \mathrm{C}_{29} \mathrm{H}_{19} \mathrm{O}_{6} \mathrm{~N}_{3}$ requires $\mathrm{C}, 60 \cdot 4 ; \mathrm{H}, 4 \cdot 8 \%$).

4-Ethyl-1,2-dimethylnaphthalene (If).-4-Ethyl-1,2,3,4-tetrahydro-2-methyl-1-oxonaphthalene (Va) (2.5 g .) in dry ether (10 c.c.) was added, with stirring, to an ice-cold solution of methylmagnesium iodide, from methyl iodide ($3 \cdot 8 \mathrm{~g}$.), in ether ($40 \mathrm{c} . \mathrm{c}$.). After 2 hours' refluxing the complex was decomposed with ice and ammonium chloride, and the solution was extracted with ether, from which 4-ethyl-1,2,3,4-tetrahydro-1-hydroxy-1,2-dimethylnaphthalene was isolated. A sample crystallised from light petroleum as hexagonal prisms, m. p. 73° (Found: C, $82 \cdot 3 ; \mathrm{H}, 9.8 . \quad \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}$ requires $\mathrm{C}, 82 \cdot 3 ; \mathrm{H}, 9.9 \%$). The remainder of the tetralol was set aside for 2 hr . with anhydrous formic acid (10 c.c.) and then diluted with water. Extraction with ether gave 1-ethyl-1,2-dihydro-3,4-dimethylnaphthalene (VIId) which distilled from sodium as a colourless oil (1.4 g .), b. p. $150^{\circ} / 1 \mathrm{~mm}$. (Found: C, 89.9; H, 9.65. $\mathrm{C}_{14} \mathrm{H}_{18}$ requires $\mathrm{C}, 90 \cdot 3 ; \mathrm{H}, 9.7 \%$).

This dihydro-compound (1.3 g .) was heated with palladised charcoal (1.3 g .) for 4 hr . at $260-280^{\circ}$, and the product was extracted with methanol, giving 4-ethyl-1,2-dimethylnaphthalene (If) (0.8 g .), b. p. $136^{\circ} / 1 \mathrm{~mm}$., $n_{\text {D }}{ }^{23} 1 \cdot 6021$ (Found: C, $91 \cdot 3 ; \mathrm{H}, 8.7 . \mathrm{C}_{14} \mathrm{H}_{16}$ requires C, $91 \cdot 25$; $\mathrm{H}, \mathbf{8 . 7 5 \%}$). Its picrate (orange needles from methanol) had m. p. 117° (Found: C, $57.6 ; \mathrm{H}, 4.6$. $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{7} \mathrm{~N}_{3}$ requires C, $58 \cdot 1 ; \mathrm{H}, 4 \cdot 6 \%$). Its trinitrobenzene adduct (golden needles from methanol) had m. p. 118° (Found: C, $60 \cdot 3 ; \mathrm{H}, 4.7 . \mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{6} \mathrm{~N}_{3}$ requires C, $60 \cdot 45 ; \mathrm{H}, 4.8 \%$). Its styphnate (orange needles from acetic acid) had m. p. 119° (Found: C, 55.3; H, 4.6. $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{8} \mathrm{~N}_{3}$ requires C, $55 \cdot 9 ; \mathrm{H}, 4 \cdot 5 \%$).

1-Ethyl-2,4-dimethylnaphthalene (Ig).-(i) 2-Methyl-4-phenylpent-3-enoic acid (IIId).
${ }^{20}$ Krollpfeiffer and Schäfer, Ber., 1923, 56, 620; Levy, Ann. Chim. (France), 1938, 9, 75.

Methyl β-benzoyl- α-methylpropionate (IIa) (14 g .) in dry ether (75 c.c.) was added to methylmagnesium iodide [from methyl iodide ($13 \cdot 3 \mathrm{~g}$.)], then refluxed for 3 hr . and set aside for 18 hr . The complex was decomposed, the mixture was extracted with ether, and the ethereal solution was washed with 5% sodium carbonate from which 2 -methyl-4-phenylpent-3-enoic acid (IIId) was isolated by acidification as an oil (3 g.), b. p. $150^{\circ} / 1 \mathrm{~mm} ., v_{\max } 1712 \mathrm{~cm} .^{-1}\left(\mathrm{CO}_{2} \mathrm{H}\right)$ (Found: $\mathrm{C}, 75 \cdot 6 ; \mathrm{H}, 7 \cdot 0 . \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}$ requires $\mathrm{C}, 75 \cdot 8 ; \mathrm{H}, 7 \cdot 4 \%$). The ethereal extract afforded a neutral compound as a pale yellow oil (6.5 g .) , b. p. $118^{\circ} / 1 \mathrm{~mm}$., $\nu_{\max } 1778 \mathrm{~cm} .^{-1}\left(\mathrm{CO}_{2} \mathrm{Me}\right.$ or lactone). Hydrolysis of the oil with 5% methanolic potassium hydroxide (36 c.c.) for 3 hr . gave the required acid (IIId) (5 g.).
(ii) α-Methyl- γ-phenylvaleric acid (IVe). The unsaturated acid (12 g.) in methanol (50 c.c.) was hydrogenated over Raney nickel (1 g .) at $100^{\circ} / 70 \mathrm{~atm}$., giving the saturated ester which was not isolated. Hydrolysis with 5% methanolic potassium hydroxide (100 c.c.) for 2 hr . gave α-methyl- γ-phenylvaleric acid (IVe) (10 g .), b. p. $125^{\circ} / 1 \mathrm{~mm} ., \nu_{\max } 1713 \mathrm{~cm} .^{-1}\left(\mathrm{CO}_{2} \mathrm{H}\right)$. (Found: C, $74 \cdot 6 ; \mathrm{H}, 8 \cdot 4 . \quad \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}$ requires $\mathrm{C}, 75 \cdot 0 ; \mathrm{H}, 8 \cdot 4 \%$).
(iii) 1,2,3,4-Tetrahydro-2,4-dimethyl-1-oxonaphthalene (Vf). The previous compound (4.8 g.) was heated at 165° for 3 min . with polyphosphoric acid prepared from phosphoric acid ($16.7 \mathrm{c} . \mathrm{c}$.) and phosphoric oxide ($17 \cdot 6 \mathrm{~g}$.). The required tetvalone (Vf) was obtained as a colourless oil (2.6 g) , b. p. $88-89^{\circ} / 1 \mathrm{~mm}$., $\nu_{\max .} 1694 \mathrm{~cm}^{-1}$ (Ar•CO) (Found: C, 82.4; H, 8.1. $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}$ requires $\mathrm{C}, 82 \cdot 7 ; \mathrm{H}, 8 \cdot 1 \%$).
(iv) 4-Ethyl-1,2-dihydro-1,3-dimethylnaphthalene (VIIe). The tetralone (Vf) ($1 \cdot 4 \mathrm{~g}$.) in dry ether ($10 \mathrm{c} . \mathrm{c}$.) was added to ethylmagnesium iodide [from ethyl iodide (3.8 g .)] in ether ($40 \mathrm{c} . \mathrm{c}$.) and refluxed for 3 hr . The complex was decomposed with ice and ammonium chloride and extracted with ether from which 4-ethyl-1,2-dihydro-4-hydroxy-1,3-dimethylnaphthalene was obtained (0.9 g .) as hexagonal prisms, m. p. 85° (from light petroleum) (Found: C, 81.9; H, 9.5 . $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}$ requires $\mathrm{C}, 82 \cdot 3 ; \mathrm{H}, \mathbf{9 . 9} \%$). This alcohol was set aside for 2 hr . in anhydrous formic acid (10 c.c.), giving 4-ethyl-1,2-dihydro-1,3-dimethylnaphthalene (VIIe) ($0 \cdot 7 \mathrm{~g}$.), b. p. $95^{\circ} / 1 \mathrm{~mm}$. (Found: C, $89.5 ; \mathrm{H}, 9.3 . \mathrm{C}_{14} \mathrm{H}_{18}$ requires $\mathrm{C}, 90.3 ; \mathrm{H}, 9.7 \%$).
(v) 1-Ethyl-2,4-dimethylnaphthalene (Ig). The preceding compound (0.6 g .) was heated with palladised charcoal (0.6 g .) for 3 hr . at $260-280^{\circ}$. The mixture, extracted with benzene, afforded 1-ethyl-2,4-dimethylnaphthalene (1 g .) (0.4 g .), b. p. $109^{\circ} / 2 \mathrm{~mm}$., $n_{\mathrm{D}}{ }^{23} 1.5975$ (Found: $\mathrm{C}, 91.5 ; \mathrm{H}, 8.8 . \quad \mathrm{C}_{14} \mathrm{H}_{16}$ requires $\mathrm{C}, 91.25 ; \mathrm{H}, 8.75 \%$). Its picrate (orange needles from methanol) had m. p. 94° (Found: C, $57 \cdot 8 ; \mathrm{H}, 4 \cdot 6 . \mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{7} \mathrm{~N}_{3}$ requires $\mathrm{C}, 58 \cdot 1 ; \mathrm{H}, 4.6 \%$).

1-Ethyl-4,6-dimethylnaphthalene (Ih).-(i) 4-p-Tolylhex-3-enoic acid (IIIe). Methyl $\beta-\mathrm{p}-$ toluoylpropionate (cf. ref. 6) (IIf) [$\left.\mathrm{v}_{\max .} 1722\left(\mathrm{CO}_{2} \mathrm{Me}\right), 1675 \mathrm{~cm} .^{-1}(\mathrm{Ar} \cdot \mathrm{CO})\right]$ (41 g .) in ether (100 c.c.) was slowly treated with ethylmagnesium iodide [from ethyl iodide (43 g .)] in ether (160 c.c.), and the reaction was completed as described for the preparation of (IIIa). 4-p-Tolylhex-3-enoic acid (IIIe) was obtained as a colourless oil (15 g .), b. p. $137-141^{\circ} / 1 \mathrm{~mm}$., $\nu_{\max }$. $1710 \mathrm{~cm} .^{-1}\left(\mathrm{CO}_{2} \mathrm{H}\right)$ (Found: C, $75 \cdot 6 ; \mathrm{H}, 7 \cdot 6 . \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}$ requires $\mathrm{C}, 76 \cdot 4 ; \mathrm{H}, 7 \cdot 9 \%$).
(ii) 4-p-Tolylhexanoic acid (IVf). The unsaturated acid (20 g .), when hydrogenated in methanol (75 c.c.) over Raney nickel (2 g .) at $100^{\circ} / 80 \mathrm{~atm}$., gave methyl 4 -p-tolylhexanoate (20 g .) , b. p. $99^{\circ} / 1 \mathrm{~mm}$., $\nu_{\text {max. }} 1740 \mathrm{~cm}^{-1}\left(\mathrm{CO}_{2} \mathrm{Me}\right.$) (Found: C, $76 \cdot 5 ; \mathrm{H}, 9 \cdot 1$. $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2}$ requires $\mathrm{C}, 76 \cdot 3 ; \mathrm{H}, 9 \cdot 15 \%$). Hydrolysis of the ester with 5% methanolic potassium hydroxide (120 c.c.) gave 4-p-tolylhexanoic acid (IVf) (17 g.), b. p. $155^{\circ} / 1 \mathrm{~mm}$., m. p. 36° (Found: C, $75 \cdot 1$; $\mathrm{H}, 8.9 . \quad \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}$ requires $\mathrm{C}, 75 \cdot 7$; $\mathrm{H}, 8.8 \%$).
(iii) 4-Ethyl-1,2,3,4-tetrahydro-7-methyl-1-oxonaphthalene (Vg). The preceding compound (IVf) (16 g .) was heated at 165° with polyphosphoric acid, from phosphoric acid (90%; $44 \cdot 5$ c.c.) and phosphoric oxide (48 g .), for 5 min . The mixture was extracted with ether, giving the required tetralone (Vg) (15 g .), b. p. $134^{\circ} / 2 \mathrm{~mm}$., $\lambda_{\max } 2540$ and $2950 \AA$ ($\log \varepsilon 4 \cdot 21$ and 3.74 respectively), $v_{\max } 1683 \mathrm{~cm} .^{-1}$ (Ar•CO) (Found: $\mathrm{C}, 83 \cdot 3 ; \mathrm{H}, 8 \cdot 5 . \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}$ requires $\mathrm{C}, 83 \cdot 0$; $\mathrm{H}, 8.6 \%$). Its semicarbazone (rhombs from dilute alcohol) had m. p. $165-166^{\circ}$ (Found: $\mathrm{C}, 68 \cdot 2 ; \mathrm{H}, 8.0 . \mathrm{C}_{14} \mathrm{H}_{19} \mathrm{ON}_{3}$ requires $\mathrm{C}, 68.5 ; \mathrm{H}, 7.8 \%$).
(iv) 1-Ethyl-1,2-dihydro-4,6-dimethylnaphthalene (VIIf). 4-Ethyl-1,2,3,4-tetrahydro-7-methyl-1-oxonaphthalene (Vg) (5 g .) in ether ($25 \mathrm{c} . \mathrm{c}$.) was added to methylmagnesium iodide [from methyl iodide ($7 \cdot 1 \mathrm{~g}$.)] in ether ($50 \mathrm{c} . \mathrm{c}$.), and the mixture was refluxed for 3.5 hr . The complex was decomposed with ice and ammonium chloride, giving the dihydro-compound (VIIf) (3 g .), b. p. $115^{\circ} / 1 \mathrm{~mm}$. (Found: C, $89 \cdot 6 ; \mathrm{H}, 9 \cdot 3 . \mathrm{C}_{14} \mathrm{H}_{18}$ requires $\mathrm{C}, 90 \cdot 3 ; \mathrm{H}, 9 \cdot 7 \%$).
(v) 1-Ethyl-4,6-dimethylnaphthalene (Ih). The preceding compound (2 g.) was heated with palladised charcoal (2 g .) at $260-280^{\circ}$ for 4 hr ., and the product was extracted with benzene.

1-Ethyl-4,6-dimethylnaphthalene (Ih) distilled from sodium as a colourless oil (1-3 g.), b. p. $85^{\circ} / 1 \mathrm{~mm}$. (Found: C, $91 \cdot 6 ; \mathrm{H}, 8.4 . \mathrm{C}_{14} \mathrm{H}_{16}$ requires $\mathrm{C}, 91.25 ; \mathrm{H}, 8.75 \%$). Its picrate (orange needles from methanol) had m. p. 85° (Found: $\mathrm{C}, 57 \cdot 4 ; \mathrm{H}, 4 \cdot 2 . \quad \mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{7} \mathrm{~N}_{3}$ requires $\mathrm{C}, 58 \cdot 1$; $\mathrm{H}, 4 \cdot 6 \%$). Its trinitrobenzene adduct (yellow needles from methanol) had m. p. 109° (Found: $\mathrm{C}, 60 \cdot 7 ; \mathrm{H}, 4 \cdot 5 . \quad \mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{6} \mathrm{~N}_{3}$ requires $\mathrm{C}, 60 \cdot 4 ; \mathrm{H}, 4.8 \%$).

1,4-Diethyl-2-methylnaphthalene (Ij).-4-Ethyl-1,2,3,4-tetrahydro-2-methyl-1-oxonaphthalene (Va) (2.9 g .) in ether ($15 \mathrm{c} . c$.) was added to ethylmagnesium iodide [from ethyl iodide ($4 \cdot 1 \mathrm{~g}$.)] in ether ($40 \mathrm{c} . c$.), and the mixture was refluxed for 4 hr . The complex, decomposed with ice and ammonium chloride, gave a colourless oil consisting largely of alcohol. This was set aside for 2 hr . in anhydrous formic acid ($10 \mathrm{c} . \mathrm{c}$.), then poured into water and extracted with ether from which 1,4-diethyl-1,2-dihydro-3-methylnaphthalene (VIIg) was obtained as a colourless oil (1.5 g .), b. p. $140^{\circ} / 1 \mathrm{~mm}$. (Found: C, $89.5 ; \mathrm{H}, 9.8 . \mathrm{C}_{15} \mathrm{H}_{20}$ requires C, 89.9 ; H, 10.1%).

This product (9.4 g .) was heated with palladised charcoal (1.4 g .) for 4 hr . at $260-280^{\circ}$, giving 1,4-diethyl-2-methylnaphthalene (Ij) (0.8 g .), b. p. $142^{\circ} / 1 \mathrm{~mm} ., n_{\mathrm{D}}{ }^{21} 1.5935$ (Found: C, $9 \mathrm{I} \cdot 2$; $\mathrm{H}, 8.8$. $\mathrm{C}_{15} \mathrm{H}_{18}$ requires $\mathrm{C}, 90.85 ; \mathrm{H}, 9.15 \%$). Its picyate (orange-red needles from methanol) had m. p. 62° (Found: C, $59.1 ; \mathrm{H}, 4.9 . \mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{7} \mathrm{~N}_{3}$ requires $\mathrm{C}, 59.0 ; \mathrm{H}, 4.95 \%$). Its trinitrobenzene adduct (golden-yellow needles from methanol) had m. p. 97° (Found: $\mathrm{C}, 61 \cdot 1 ; \mathrm{H}, 4.9$. $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{6} \mathrm{~N}_{3}$ requires $\mathrm{C}, 61 \cdot 3 ; \mathrm{H}, 5 \cdot 15 \%$). Its trinitrotoluene adduct (yellow needles from methanol) had m. p. 68° (Found: $\mathrm{C}, 61 \cdot 8 ; \mathrm{H}, 5 \cdot 2 . \mathrm{C}_{22} \mathrm{H}_{23} \mathrm{O}_{6} \mathrm{~N}_{3}$ requires $\mathrm{C}, 62 \cdot 2 ; \mathrm{H}$, $5 \cdot 45 \%$).

1,4-Diethyl-6-methylnaphthalene (Ik).—4-Ethyl-1,2,3,4-tetrahydro-7-methyl-1-oxonaphthalene (Vg.) (5 g .) in ether ($25 \mathrm{c} . \mathrm{c}$.) was added to ethylmagnesium iodide [from ethyl iodide (7.8 g .)] in ether ($50 \mathrm{c} . \mathrm{c}$.), and the mixture was refluxed for 4 hr . Decomposition of the complex with ice and ammonium chloride gave the dihydro-compound (VIIh) which distilled from sodium as a colourless oil (2.7 g .), b. p. $123^{\circ} / 2 \mathrm{~mm}$ (Found: C, $90 \cdot 1 ; \mathrm{H}, 10 \cdot 0 . \mathrm{C}_{15} \mathrm{H}_{20}$ requires $\mathrm{C}, 89 \cdot 9 ; \mathrm{H}, 10 \cdot 1 \%$).

The dihydro-compound (2 g .) was heated with palladised charcoal (2 g .) at $260-280^{\circ}$ for 4 hr ., and the product was extracted with benzene. Distillation from sodium gave 1,4 -diethyl-$6-$ methylnaphthalene (Ik) ($1 \cdot 2 \mathrm{~g}$.), b. p. $112^{\circ} / 1 \mathrm{~mm}$. (Found: $\mathrm{C}, 90 \cdot 2 ; \mathrm{H}, 9 \cdot 1 . \mathrm{C}_{15} \mathrm{H}_{18}$ requires C, $90.85 ; \mathrm{H}, 9.15 \%$). Its picrate (orange needles from methanol) had m. p. $71-72^{\circ}$ (Found: $\mathrm{C}, 59.2 ; \mathrm{H}, 5 \cdot 3 . \quad \mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{7} \mathrm{~N}_{3}$ requires $\mathrm{C}, 59 \cdot 0 ; \mathrm{H}, 4.95 \%$). Its trinitrobenzene adduct (yellow needles from methanol) had m. p. 101° (Found: $\mathrm{C}, 61 \cdot 1 ; \mathrm{H}, 5 \cdot 3 . \quad \mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{6} \mathrm{~N}_{3}$ requires $\mathrm{C}, 61 \cdot 3$; $\mathrm{H}, 5 \cdot 15 \%$).

1,6-Diethyl-4-methylnaphthalene (Il).-1,6-Diethyl-1,2,3,4-tetrahydro-4-oxonaphthalene (Vd) $(3.3 \mathrm{~g}$.) in ether ($10 \mathrm{c} . \mathrm{c}$.) was added to methylmagnesium iodide [from methyl iodide (2 c.c.)] in ether (50 c.c.), and the mixture was refluxed for 2 hr . The product, largely the alcohol, was set aside in anhydrous formic acid (12 c.c.) for 2 hr ., giving 1,6-diethyl-1,2-dihydro-4-methylnaphthalene (VIIj) (3 g .), b. p. $89^{\circ} / 1 \mathrm{~mm}$. (Found: $\mathrm{C}, 89 \cdot 8 ; \mathrm{H}, 9 \cdot 9 . \mathrm{C}_{15} \mathrm{H}_{20}$ requires $\mathrm{C}, 89 \cdot 9$; $\mathrm{H}, 10 \cdot 1 \%$).

This product (1.4 g .), heated for 4 hr . with palladised charcoal (1.4 g .) at $260-280^{\circ}$, gave 1,6-diethyl-4-methylnaphthalene (Il) (1.1 g.), b. p. $90^{\circ} / 1 \mathrm{~mm}$., $n_{\mathrm{D}}{ }^{21} 1.5859$ (Found: C, $91 \cdot 0$; $\mathrm{H}, 9 \cdot 1$. $\mathrm{C}_{15} \mathrm{H}_{18}$ requires $\mathrm{C}, 90 \cdot 85 ; \mathrm{H}, 9 \cdot 15 \%$). Its picrate (orange needles from methanol) had m . p. 56° (Found: C, $59.1 ; \mathrm{H}, 6.0 . \quad \mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{7} \mathrm{~N}_{3}$ requires $\mathrm{C}, 59.0 ; \mathrm{H}, 4.95 \%$). Its trinitrobenzene adduct (lemon needles from methanol) had m. p. 80° (Found: $\mathrm{C}, 60.9 ; \mathrm{H}, 5 \cdot 0$. $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{6} \mathrm{~N}_{3}$ requires $\mathrm{C}, 61 \cdot 3 ; \mathrm{H}, 5 \cdot 15 \%$).

4,6-Diethyl-1-methylnaphthalene (Im).-(i) 4-p-Ethylphenylpent-3-enoic acid (IIIf). Methyl β-p-ethylbenzoylpropionate (IIe) (84.4 g .) in ether (250 c .c.) was treated with methylmagnesium iodide [from methyl iodide ($75 \cdot 2 \mathrm{~g}$.)] in ether ($150 \mathrm{c} . \mathrm{c}$.), and the reaction completed by 5 hours' refluxing. 4-p-Ethylphenylpent-3-enoic acid (IIIf) was obtained as an oil (6.5 g.), b. p. $138^{\circ} / 1$ mm ., $v_{\text {max. }} 1719 \mathrm{~cm} .^{-1}\left(\mathrm{CO}_{2} \mathrm{H}\right)$ (Found: $\mathrm{C}, 76 \cdot 7 ; \mathrm{H}, 7 \cdot 9 . \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}$ requires $\mathrm{C}, 76 \cdot 4 ; \mathrm{H}, 7 \cdot 9 \%$). The product of the Grignard reaction before fractionation showed evidence of substantial amounts of a lactone ($v_{\max } 1778 \mathrm{~cm} .^{-1}$), probably γ-methyl γ - p-ethylphenylbutyrolactone.
(ii) γ-p-Ethylphenylvaleric acid (IVg). The crude product (10 g .) of the previous reaction was hydrogenated for 6 hr . in methanol (50 c.c.) over Raney nickel (1 g .) at $100^{\circ} / 110 \mathrm{~atm}$., and then hydrolysed with 5% methanolic potassium hydroxide (100 c.c.). The required γ-pethylphenylvaleric acid (IVg) was isolated as an oil (9.5 g .), b. p. $137^{\circ} / 1 \mathrm{~mm} ., v_{\text {max. }} 1706 \mathrm{~cm} .^{-1}$ $\left(\mathrm{CO}_{2} \mathrm{H}\right)$ (Found: $\mathrm{C}, 76 \cdot 0 ; \mathrm{H}, 8 \cdot 7 . \quad \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}$ requires $\mathrm{C}, 75 \cdot 7 ; \mathrm{H}, 8.8 \%$).
(iii) 6-Ethyl-1,2,3,4-tetrahydro-1-methyl-4-oxonaphthalene (Vh). $\gamma-p$-Ethylphenylvaleric acid (6 g .), cyclised with polyphosphoric acid [from phosphoric acid ($90 \% ; 25 \cdot 1$ c.c.) and phosphoric oxide (26.5 g .)] at 165° for 5 min ., gave the tetralone (Vh) (4.5 g .), b. p. $113 \% 1 \mathrm{~mm}$., $v_{\text {max. }} 1682$ $\mathrm{cm} .^{-1}$ (Found: C, $82 \cdot 8 ; \mathrm{H}, 8 \cdot 7 . \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}$ requires $\mathrm{C}, 82 \cdot 9 ; \mathrm{H}, 8.6 \%$).
(iv) 4,6-Diethyl-1,2-dihydro-1-methylnaphthalene (VIIk). The tetralone (Vh) (2.5 g.) in ether ($15 \mathrm{c} . c$.) was added to ethylmagnesium iodide [from ethyl iodide (6.7 g .)] in ether ($20 \mathrm{c} . \mathrm{c}$.), and the mixture was refluxed for 4 hr . The product was set aside for 2 hr . in anhydrous formic acid ($10 \mathrm{c} . \mathrm{c}$.), giving 4,6-diethyl-1,2-dihydro-1-methylnaphthalene (VIIk) (1.6 g.), b. p. $96^{\circ} / \mathbf{m m}$. (Found: C, 89.75; H, 10.0. $\mathrm{C}_{15} \mathrm{H}_{20}$ requires $\mathrm{C}, 89 \cdot 9 ; \mathrm{H}, 10 \cdot 1 \%$).
(v) 4,6-Diethyl-1-methylnaphthalene (Im). The preceding compound ($1 \cdot 2 \mathrm{~g}$.) was heated for 4 hr . with palladised charcoal (1.2 g .) at $260-270^{\circ}$. 4,6-Diethyl-1-methylnaphthalene (Im) was obtained as a colourless oil (0.9 g.), b. p. $110^{\circ}, n_{\mathrm{D}}{ }^{26} 1.5808$ (Found: C, $91 \cdot 1 ; \mathrm{H}, 9 \cdot 2 . \quad \mathrm{C}_{15} \mathrm{H}_{18}$ requires $\mathrm{C}, 90.85 ; \mathrm{H}, 9.15 \%$). Its picrate (orange needles from methanol) had m. p. 76.5° (Found: C, $59.05 ; \mathrm{H}, 5 \cdot 0 . \quad \mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{7} \mathrm{~N}_{3}$ requires $\mathrm{C}, 59 \cdot 0 ; \mathrm{H}, 4.95 \%$).

1,4,6-Tviethylnaphthalene (In).-1,6-Diethyl-1,2,3,4-tetrahydro-4-oxonaphthalene (Vd) (4g.) in ether (12 c.c.) was added to ethylmagnesium iodide [from ethyl iodide ($3 \cdot 3 \mathrm{c} . \mathrm{c}$.)] in ether ($50 \mathrm{c} . \mathrm{c}$.), and the mixture was refluxed for 2 hr . The product was set aside for 2 hr . in anhydrous formic acid (10 c.c.), giving 1,4,6-triethyl-1,2-dihydronaphthalene (VIII) ($3 \cdot 1 \mathrm{~g}$.), b. p. $119^{\circ} / 1 \mathrm{~mm}$. (Found: $\mathrm{C}, 89.9 ; \mathrm{H}, 10 \cdot 1 . \mathrm{C}_{16} \mathrm{H}_{22}$ requires $\mathrm{C}, 89.65 ; \mathrm{H}, 10.35 \%$).

This product (2.9 g .) was heated with palladised charcoal ($2 \cdot 9 \mathrm{~g}$.) at $260-280^{\circ}$ for 4 hr ., giving 1,4,6-triethylnaphthalene (In) (2 g .), b. p. $128^{\circ} / 2 \mathrm{~mm}$., $n_{\mathrm{D}}{ }^{25} 1.5770$ (Found: C, $90 \cdot 4 ; \mathrm{H}, 9 \cdot 4$. $\mathrm{C}_{16} \mathrm{H}_{20}$ requires $\mathrm{C}, 90.5 ; \mathrm{H}, 9.5 \%$). Its picrate (red-orange needles from methanol) had m. p. 53° (Found: C, 59.9; H,5.0. $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{O}_{7} \mathrm{~N}_{3}$ requires $\mathrm{C}, 59 \cdot 9 ; \mathrm{H}, 5 \cdot 25 \%$).

1-Ethyl-4,5,8-trimethylnaphthalene (Ip).—(i) Methyl β-(2,5-dimethylbenzoyl)propionate (IIg) (21 g.) was obtained as an oil, b. p. $148^{\circ} / 1 \mathrm{~mm} ., n_{\mathrm{D}}{ }^{19} 1.5202, \nu_{\max } 1754 \mathrm{~cm} .^{-1}\left(\mathrm{CO}_{2} \mathrm{Me}\right)$ (Found: $\mathrm{OMe}, 14 \cdot 0 . \quad \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}$ requires $\mathrm{OMe}, 14 \cdot 1 \%$), when the corresponding acid ${ }^{6}(30 \mathrm{~g}$.) was refluxed for 2 hr . with methanol (60 c.c.) and sulphuric acid (3 c.c.).
(ii) 4-(2,5-Dimethylphenyl)hex-3-enoic acid (IIIg). The ester (IIg) (15 g .) in ether (20 c.c.) was treated with ethylmagnesium iodide [from ethyl iodide (14.3 g .)] in ether ($60 \mathrm{c} . \mathrm{c}$.), and the reaction was completed during 18 hr . as described for the preparation of (IIIa). The required acid (IIIg) was obtained as an oil (5 g.), b. p. $146^{\circ} / 1 \mathrm{~mm}$., $v_{\max } 1715 \mathrm{~cm}^{-1}$ (Found: C, $76 \cdot 5$; $\mathrm{H}, 8 \cdot 1 . \quad \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2}$ requires $\mathrm{C}, 77 \cdot 0 ; \mathrm{H}, 8.3 \%$), along with recovered keto-acid.
(iii) 4-(2,5-Dimethylphenyl)hexanoic acid (IVh). -The unsaturated acid (30 g .) was hydrogenated in methanol ($80 \mathrm{c} . \mathrm{c}$.) over Raney nickel (2 g .) at $100^{\circ} / 120 \mathrm{~atm}$., giving methyl 4 -(2,5 -dimethylphenyl)hexanoate (32 g .), b. p. $133^{\circ} / 1 \mathrm{~mm} ., v_{\max } 1745 \mathrm{~cm} .^{-1}$ (Found: C, $77 \cdot 6 ; \mathrm{H}, 8.9$. $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2}$ requires $\mathrm{C}, 76 \cdot 9 ; \mathrm{H}, 9.5 \%$). The ester was refluxed for 6 hr . with 5% methanolic potassium hydroxide ($160 \mathrm{c} . c$.), giving the required acid (IVh) (22.5 g .), b. p. $149^{\circ} / 1 \mathrm{~mm}$., $\nu_{\text {max. }}$. $1715 \mathrm{~cm} .^{-1}$ (Found: $\mathrm{C}, 76 \cdot 8 ; \mathrm{H}, 8.9 . \quad \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2}$ requires $\mathrm{C}, 76 \cdot 3 ; \mathrm{H}, 9 \cdot 15 \%$).
(iv) 1-Ethyl-1,2,3,4-tetrahydro-5,8-dimethyl-4-oxonaphthalene (Vj). The preceding compound (12.4 g .) was heated at 165° for 5 min . with polyphosphoric acid [from phosphoric acid (90%; 33.4 g .) and phosphoric oxide ($35 \cdot 3 \mathrm{~g}$.)], giving the tetralone (Vj) (7.8 g .) , b. p. $121^{\circ} / \mathrm{l} \mathrm{mm} .$, $\nu_{\max .} 1675 \mathrm{~cm}^{-1}$ ($\mathrm{Ar} \cdot \mathrm{CO}$) (Found: C, $83 \cdot 1 ; \mathrm{H}, 8 \cdot 3 . \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}$ requires $\mathrm{C}, 83 \cdot 1 ; \mathrm{H}, 9 \cdot 0 \%$).
(iii) 1-Ethyl-1,2-dihydro-4,5,8-trimethylnaphthalene (VIIm). The tetralone (3 g.) in ether (15 c.c.) was added to methylmagnesium iodide [from methyl iodide ($4 \cdot 2 \mathrm{~g}$.)] in ether (40 c.c.), and the mixture was refluxed for 14 hr ., giving the 1,2 -dihydro-compound (VIIm) (0.4 g .), b. p. $120^{\circ} / 1 \mathrm{~mm}$. (Found: C, $89 \cdot 6 ; \mathrm{H}, 10 \cdot 0 . \mathrm{C}_{15} \mathrm{H}_{20}$ requires $\mathrm{C}, 89.9 ; \mathrm{H}, 10 \cdot 1 \%$).
(iv) 1-Ethyl-4,5,8-trimethylnaphthalene (Ip). This dihydro-compound (0.4 g .), heated for 3 hr . with palladised charcoal (0.4 g .) at $260-280^{\circ}$, gave 1-ethyl-4,5,8-trimethylnaphthalene (Ip) (0.2 g .), b. p. $118^{\circ} / 3 \mathrm{~mm}$., $n_{\mathrm{p}}{ }^{19} 1.5841$ (Found: C, $90.5 ; \mathrm{H}, 9 \cdot 2$. $\mathrm{C}_{15} \mathrm{H}_{18}$ requires C, 90.85 ; $\mathrm{H}, \mathbf{9 . 1 5 \%}$). Its picrate (brick-red needles from methanol) had m. p. 110° (Found: C, 59.1 ; $\mathrm{H}, 4 \cdot 3$. $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{7} \mathrm{~N}_{3}$ requires $\mathrm{C}, 59 \cdot 0 ; \mathrm{H}, 4.95 \%$).

1,4-Diethyl-5,8-dimethylnaphthalene (Ir).—1-Ethyl-1,2,3,4-tetrahydro-5,8-dimethyl-4-oxonaphthalene (Vj) (5 g .) in ether (25 c.c.) was added to ethylmagnesium iodide [from ethyl iodide ($7 \cdot 7 \mathrm{~g}$.)] in ether ($60 \mathrm{c} . c$.), and the mixture was refluxed for 9 hr . The product was set aside for 2 hr . in anhydrous formic acid (20 c.c.), giving 1,4-diethyl-1,2-dihydro-5,8-dimethylnaphthalene (VIIn) (1.7 g .), b. p. $101^{\circ} / 1 \mathrm{~mm}$. (Found: $\mathrm{C}, 89.5 ; \mathrm{H}, 9.9 . \mathrm{C}_{16} \mathrm{H}_{22}$ requires $\mathrm{C}, 89 \cdot 65$; $\mathrm{H}, 10 \cdot 35 \%$).

This product (1.3 g .) was heated for 4 hr . at $260-280^{\circ}$ with palladised charcoal (1.3 g.),
giving 1,4-diethyl-5,8-dimethylnaphthalene (Ir) (1 g.), b. p. $107^{\circ} / 1 \mathrm{~mm}$., $n_{\mathrm{D}}{ }^{20} 1.5844$ (Found: $\mathrm{C}, 90.6 ; \mathrm{H}, 9.3 . \quad \mathrm{C}_{16} \mathrm{H}_{20}$ requires $\mathrm{C}, 90.5 ; \mathrm{H}, 9.5 \%$). Its picrate (orange needles from methanol) had m. p. 135° (Found: C, $59 \cdot 8$; H, $5 \cdot 1 . \mathrm{C}_{22} \mathrm{H}_{23} \mathrm{O}_{7} \mathrm{~N}_{3}$ requires $\mathrm{C}, 59.9 ; \mathrm{H}, 5 \cdot 25 \%$).

1-Methoxy-8-methylnaphthalene (Iu) and 8-Methyl-1-naphthol (Iv).-(i) β-o-Methoxyphenylbutyryl chloride ($\mathrm{X} ; \mathrm{R}=\mathrm{Cl}$). β-o-Methoxyphenylbutyric acid ${ }^{21}$ ($\mathrm{X} ; \mathrm{R}=\mathrm{OH}$) (25 g .) was refluxed for 1 hr . with thionyl chloride (20 c.c.) and the product distilled. The acid chloride was collected as a golden-yellow oil ($24 \cdot 7 \mathrm{~g}$.), b. p. $144-145^{\circ} / 3 \mathrm{~mm}$.
(ii) γ-o-Methoxyphenylvalevamide ($\mathrm{XI} ; \mathrm{R}=\mathrm{NH}_{2}$). The acid chloride $(\mathrm{X} ; \mathrm{R}=\mathrm{Cl})$ $(26.1 \mathrm{~g}$.) in ether ($150 \mathrm{c} . c$.) was slowly added to a stirred, ice-cold solution of diazomethane (12.1 g .) in ether ($700 \mathrm{c.c}$.), and the mixture was set aside for 2 days. The solvent was then removed, the residue was dissolved in dioxan (257 c.c.) at 50°, a mixture of 30% aqueous ammonia (150 c.c.) and 10% aqueous silver nitrate ($40 \mathrm{c.c}$.) was rapidly added and the whole was then heated on the water-bath for 2 hr . After filtration, the dioxan and water were removed under reduced pressure, and the oily residue was collected in ether, dried, and recovered. It was triturated with light petroleum, giving γ-o-methoxyphenylvalevamide (XI; $\mathrm{R}=\mathrm{NH}_{2}$) (16.2 g .) which crystallised from benzene as needles, m. p. 76° (Found: $\mathrm{C}, 69 \cdot 6$; $\mathrm{H}, 8.4 . \quad \mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{~N}$ requires $\mathrm{C}, 69.5 ; \mathrm{H}, 8.3 \%$).
(iii) γ-o-Methoxyphenylvaleric acid (XI; $\mathrm{R}=\mathrm{OH}$). The amide (16.2 g .) was refluxed for 5 hr . with 15% aqueous potassium hydroxide ($100 \mathrm{c} . \mathrm{c}$.), then acidified and extracted with ether, giving the acid (16 g .) which recrystallised from light petroleum as prisms, m. p. $66-67^{\circ}$ (Found: $\mathrm{C}, 69.5 ; \mathrm{H}, 7 \cdot 8 . \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3}$ requires $\mathrm{C}, 69 \cdot 2 ; \mathrm{H}, 7.7 \%$).
(iv) 1,2,3,4-Tetrahydro-5-methoxy-4-methyl-1-oxonaphthalene (Vk). The preceding compound (15 g .) was heated at 165° for 5 min . with polyphosphoric acid, from phosphoric acid (90%; 52.6 c.c.) and phosphoric oxide (63.2 g.). The mixture was cooled, poured on ice, and extracted with ether. The extract was washed with water, 5% sodium carbonate solution, and water, and then dried. When the solvent was removed a solid and an oil remained. The solid (XII) was collected and crystallised from ethyl acetate as colourless needles ($4 \cdot 1 \mathrm{~g}$.), m. p. 242° (Found: $\mathrm{C}, 75 \cdot 5 ; \mathrm{H}, 7 \cdot 2$; $\mathrm{OMe}, 16 \cdot 25$. $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}$ requires $\mathrm{C}, 75 \cdot 8 ; \mathrm{H}, 7 \cdot 4 ; \mathrm{OMe}, 16 \cdot 3 \%$). The oil from the filtrate was distilled, giving 1,2,3,4-tetrahydro-5-methoxy-4-methyl-1-oxonaphthalene (Vk) $(5 \cdot 5 \mathrm{~g}$.$) , b. p. 107^{\circ} / 1 \mathrm{~mm}$. , $\nu_{\max } 1686 \mathrm{~cm} .^{-1}(\mathrm{Ar} \cdot \mathrm{CO})$ (Found: $\mathrm{C}, 75 \cdot 9 ; \mathrm{H}, 7 \cdot 5 . \quad \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}$ requires C, 75.8 ; H, $7 \cdot 4 \%$).
(v) 1,2,3,4-Tetrahydro-5-methoxy-4-methylnaphthalene (VId). The tetralone (Vk) (5.5 g.) was reduced during 30 hr . with amalgamated zinc (69 g .) in concentrated hydrochloric acid (69 c.c.), water ($42 \mathrm{c.c}$.), acetic acid ($1 \cdot 5$ c.c.), and toluene ($20 \mathrm{c} . \mathrm{c}$.). The methoxytetralin (VId) distilled from sodium as a colourless oil (3.3 g.), b. p. 78° (Found: $\mathrm{C}, 82 \cdot 2 ; \mathrm{H}, 8.9 . \quad \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}$ requires $\mathrm{C}, 81 \cdot 8 ; \mathrm{H}, \mathbf{9} \cdot 15 \%$).
(vi) 1-Methoxy-8-methylnaphthalene (Iu). (a) The methoxytetralin (3.4 g .), heated for 4 hr . at $260-280^{\circ}$ with palladised charcoal (3.4 g .), yielded a mixture of 1 -methylnaphthalene ($2 \cdot 1 \mathrm{~g}$.), b. p. $60^{\circ} / 1 \mathrm{~mm}$. (Found: C, $93 \cdot 1 ; \mathrm{H}, 7 \cdot 0$. Calc. for $\mathrm{C}_{11} \mathrm{H}_{10}: \mathrm{C}, 92 \cdot 9 ; \mathrm{H}, 7 \cdot 1 \%$) (picrate, $\mathrm{m} . \mathrm{p}$. and mixed m. p. 143°), and 1-methoxy-8-methylnaphthalene (Iu) ($0 \cdot 1 \mathrm{~g}$.), b. p. $98^{\circ} / 1 \mathrm{~mm}$. [picrate (red-orange needles from methanol), m. p. 154° (Found: $\mathrm{C}, 53.5 ; \mathrm{H}, 3 \cdot 7 . \mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{8} \mathrm{~N}_{3}$ requires $\mathrm{C}, 53.9 ; \mathrm{H}, 3.8 \%$)]. (b) The tetralin (2.2 g .) was heated for 3 hr . with sulphur (0.4 g .) at $220-230^{\circ}$, giving 1-methoxy-8-methylnaphthalene (Iu) (1.2 g.), b. p. $105^{\circ} / 2 \mathrm{~mm}$., $n_{\mathrm{D}}{ }^{26} 1.5625$, $\lambda_{\max } 2290,2800,2920$, and $3260 \AA(\log \varepsilon 4 \cdot 48,3.54,3.55$, and 2.98 respectively), whose picrate was identical with that described above.
(vii) 8-Methyl-1-naphthol (Iv). 1-Methoxy-8-methylnaphthalene (Iu) was refluxed for 2 hr . with hydriodic acid ($d 1 \cdot 7 ; 30$ c.c.) and acetic acid (33 c.c.). The solution was cooled, diluted, and extracted with ether. The ether extract was washed with water and then extracted with 10% sodium hydroxide solution. The alkaline extract was acidified and the product was collected in ether from which the naphthol was obtained as an oil ($0 \cdot 3 \mathrm{~g}$.) , b. p. $110^{\circ} / 4 \mathrm{~mm}$. Its picrate (red-orange needles from methanol) had m. p. 190° (Found: $\mathrm{C}, 52 \cdot 3 ; \mathrm{H}, 3 \cdot 3$. $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{O}_{8} \mathrm{~N}_{3}$ requires $\mathrm{C}, 52 \cdot 7$; $\mathrm{H}, \mathbf{3 \cdot 3} \%$).

The authors thank the Government of the Republic of Ireland for Research Maintenance Grants awarded to L. O. H. and J. McC.

University Chemical Laboratory, Trinity College, Dublin.
[Received, November 19th, 1959.]
${ }_{21}$ Woodruff, Org. Synth., 1944, 24, 69.

[^0]: * Part III, J., 1954, 2420.
 ${ }^{1}$ Mayer and Stamm, Ber., 1923, 56, 1424.
 ${ }^{2}$ Berliner, Org. Reactions, 1949, 5, 242, 275.
 ${ }^{3}$ Cocker, Cross, Fateen, Lipman, and Whyte, Chem. and Ind., 1949, 641; Cocker, Cross, Fateen, Lipman, Stuart, Thompson, and Whyte, J., 1950, 1781; Cocker, Fateen, and Lipman, J., 1951, 926; cf. Baddar, Fahim, and Fleifel, J., 1955, 2199.
 ${ }^{4}$ Buchta and Haagner, Chem. Ber., 1948, 81, 251, who also give references to earlier work.

[^1]: ${ }^{5}$ Baddar and Warren, $J ., 1939,944$.
 ${ }^{6}$ Barnett and Sanders, J., 1933, 434.
 7 Cocker, Cross, Edward, Jenkinson, and McCormick, J., 1953, 2355.

[^2]: ${ }^{8}$ Gillam and Stern, " An Introduction to Electronic Absorption Spectroscopy," Arnold, London,

[^3]: ${ }^{14}$ Bellamy, "The Infra-red Spectra of Complex Molecules," Methuen, London, 2nd edn., 1958, p. 75.

[^4]: ${ }^{16}$ Cf. Anschütz and Motschmann, Annalen, 1915, 40\%, 84.
 ${ }_{17}$ Cf. von Braun and Stuckenschmidt, Ber., 1923, 56, 1724.
 18 Wren and Crawford, J., 1937, 230.
 19 Smith and Horwitz, J. Amer. Chem. Soc., 1949, 71, 3418.

